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Abstract—Threat modeling is a popular method to securely
develop systems by achieving awareness of potential areas of
future damage caused by adversaries. However, threat modeling
for systems relying on Artificial Intelligence is still not well
explored. While conventional threat modeling methods and tools
did not address AI-related threats, research on this amalgamation
still lacks solutions capable of guiding and automating the
process, as well as providing evidence that the methods hold up
in practice. Consequently, this paper presents ThreatFinderAI, an
approach and tool providing guidance and automation to model
AI-related assets, threats, countermeasures, and quantify residual
risks. To evaluate the practicality of the approach, participants
were tasked to recreate a threat model developed by cybersecu-
rity experts of an AI-based healthcare platform. Secondly, the
approach was used to identify and discuss strategic risks in
an LLM-based application through a case study. Overall, the
solution’s usability was well-perceived and effectively supports
threat identification and risk discussion.

Index Terms—AI Security, Threat Modeling, Risk Analysis

I. INTRODUCTION

Artificial Intelligence (AI) is considered a disruptive tech-
nology that is being integrated into different domains, ranging
from healthcare to embedded implementations [1], which now
serve as a key contributor to other technologies such as 6G [2].
In addition to the wide range of domains that show interest
in AI technologies, an outstanding observation is the speed at
which AI technology is adopted. For example, ChatGPT has
attracted 100 million monthly active users within weeks [3].

The fact that AI technologies are now readily available to in-
dividuals, corporations, and national actors has also given rise
to concern. For example, [4] have analyzed the implications of
Large Language Models (LLMs) in the context of the Swiss
Cybersecurity landscape, summarizing threats such as spear
phishing, vulnerable code injections, and remote code execu-
tion [4]. Furthermore, researchers have demonstrated that these
attacks can be executed in a realistic setting [5]. Aside from
LLMs, extensive research has demonstrated potential attacks
in related AI technologies, including Machine Learning [6],
Federated Learning [7], and Computer Vision [8].

It appears that the increasing adoption of these technologies
and the concerns surrounding them are rightly part of current
discussions. However, it is vital to consider that the adop-
tion is ongoing – organizations are actively integrating these
technologies into their products and services. This raises the
question of how organizations should approach these security
concerns, especially given the scarcity of cybersecurity talent
and the speed at which AI services are integrated.

One approach that has demonstrated value in the conven-
tional application security field is threat modeling, which
is used for secure software development, risk assessment,
or to foster security awareness [9]. While threat modeling
can help identify and mitigate issues at design time [10],
creating suitable threat models is still challenging for software
engineers and data scientists. Multiple reasons can challenge
the creation of threat models for AI systems. In research, wide
attention is given to investigating threats and vulnerabilities
from a research perspective without proposing practical cy-
bersecurity approaches. Furthermore, existing threat modeling
methodologies and tools are conceptualized for conventional
software systems and, hence, do not directly support AI threat
identification. Recent research addressed how to apply threat
modeling for AI [11], [12]. However, this limited body of
research has not shown how to support or automate the design
process. Moreover, these approaches were not deployed in
scenarios involving real users and design problems.

To fill this gap, the key contributions of this paper is an
asset-centric threat modeling and risk assessment approach and
a guiding tool. The methodology comprises seven steps that
are aligned with the design procedures of AI-based systems.
Existing literature is transformed into a queryable knowledge
graph to guide and automate threat identification. A stencil
library is provided to represent AI-related assets, thereby em-
bedding the semantics of the knowledge graph into diagrams.
This supports automated asset and threat identification when
modeling AI-based system architectures. Moreover, this work
integrates business impact analysis to identify impacts and
Monte Carlo simulations using expert-based estimates to quan-
tify residual risk exposure. Finally, experiments demonstrate
that the tool can support users in reproducing a threat model
created by cybersecurity experts. For this, different types of
users were tasked to re-create a threat model based on a given
system architecture, followed by a qualitative investigation
of the tool’s perceived usability. Finally, the cybersecurity
experts assessed the user’s models. In a second evaluation, the
approach’s usefulness in a risk analysis scenario is assessed
through a case study of an LLM-based architecture for a law
firm. Overall, the tool can guide and automate threat modeling
for AI and enable subsequent risk analysis.

This paper is organized as follows. Section II presents an
overview of related literature. While Section III details the
design, evaluations are described in Section IV. Conclusions
and directions for future work are outlined in Section V.
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II. BACKGROUND AND RELATED WORK

Literature related to this work can be grouped into three
segments: (i) research identifying attacks on AI systems, (ii)
established threat modeling tools and methods, and (iii) a
small body of literature looking into the combination of the
former two. Due to the lack of research on AI threat modeling,
painting a realistic picture of the problem domain requires a
summary of research in all three areas.

A recent survey organizes cyber attacks on AI systems
according to the Machine Learning (ML) pipeline. Data
poisoning attacks influence the resulting model by injecting
adversarial samples during data collection. These may be
falsified at the source or during storage [16]. The attack’s goal
may vary, and multiple poisoning strategies (i.e., random or
targeted) exist [17]. Spanning the feature selection and model
training stages, several strategies involve replacing the model
with a poisoned one [18]. Attacks achieving model inversion,
inference, and failure are described during the inference stage.
Model inversion aims to recover information on the training
samples [18], while extraction attacks attempt to obtain or
reconstruct the model based on limited access [18].

Looking into threat modeling tools and methods, none of
the popular tools such as the Microsoft Threat Modeling Tool,
CAIRIS, Threatspec, SDElements, or Tutamen focus on threat
modeling for AI systems [19], [20], [21], [22]. Although
some present the ability to create custom threat libraries, no
taxonomies or AI-related methodologies exist.

Although industry efforts do not focus on threat modeling
as a discipline, several ongoing efforts in describing AI attacks
can be found. MITRE ATLAS includes attack tactics that are
specific to AI [23]. Another knowledge base that provides
a guideline for mitigating AI threats was proposed by Mi-
crosoft [24]. Similarly, OWASP has presented guides to ensure
the security of systems relying on AI [25]. A comprehensive
report of AI-related threats is presented by the European Union
Agency for Network and Information System [26] (ENISA).

The third and most closely related literature group reports
evidence of integrating the AI paradigm within threat model-
ing. The limited number of publications [15] (see TABLE I)
connect potential risks to the elements generated throughout
various phases of the life cycle of ML models, ranging from
the initial requirements analysis to maintenance.

[12] applies conventional threat modeling consisting of data
flow diagramming and STRIDE-based threat identification.
While the methodology reports the successful mapping of a

TABLE I
LITERARY WORK APPLYING THREAT MODELING TO AI SYSTEMS

Work Contribution Evaluation Domain

[12] 2020 Method, Survey Illustration Requirements Engineering
[13] 2021 Degradation Method Demonstration Adversarial ML
[14] 2022 Threat Model Demonstration Cellular Networks
[15] 2022 Methodology Illustration AI Threat Modeling
This 2024 Methodology, Tool, Case Study, AI Threat Modeling

Risk Quantification Field Test

threat taxonomy to an illustrative model, experts carry out the
mapping process manually. Furthermore, weaknesses such as
limited results from a singular synthetic case study and no
investigation on usability are acknowledged [12]. In [13], a
gold standard dataset is used to evaluate the degradation of a
model during the productive stage. A metric is proposed that
quantifies the degradation loss, which could quantify the im-
pact of a threat. However, focusing on existing models might
indicate that the method is not applicable during the design
stage, making it impractical for architectural threat modeling.
A domain-specific threat model is created in [14], focusing on
Open Radio Access Network (O-RAN) architectures. Thus, no
generic approach is evaluated. The paper by [15] is the most
closely related contribution to threat modeling of AI-based
systems. It advocates integrating threat modeling methodolo-
gies in AI security analysis and introduces the STRIDE-AI
methodology. However, it involves a manual mapping process,
lacking automation and hindering scalability and adaptability
to system changes. The methodology’s evaluation is based on
a single use case without involving users, providing insights
but not covering all challenges in diverse ML applications.

In summary, while one might argue that attacks on AI are
not radically different from conventional cyber attacks, it is
unclear how straightforward the creation of a threat model for
AI is. More specifically, the guiding factors and the degree of
automation, especially when creating a threat model by real
users during the design stage of a system, is unclear, posing
an opportunity for the development of a guiding tool oriented
towards the design process of AI system architectures.

III. THE ThreatFinderAI APPROACH

To design and implement a threat modeling approach for
AI-based systems, the architectural semantics of these systems
must be mapped to the threat modeling process. The architec-
ture of the ThreatFinderAI approach is visualized in Fig. 1. At
the top, a high-level overview of the threat modeling procedure
is outlined. These steps are aligned with existing research on
threat modeling. In addition, concepts found in the enterprise
risk management (ERM) domain [27] were adopted, enabling
the formulation of strategic risks. This process was leveraged
to design the individual components that support the overall
process and, in sum, provide automated threat modeling for
AI-based systems. The architectural components, consisting
of eleven key components supporting the approach, are shown
below. A prototype was then designed and implemented to
investigate the feasibility and effectiveness of the approach.

A. Methodology and Architecture

For the objective identification step, literary analysis re-
vealed the necessity to adopt the AI-specific proposal of
security principles from [15], [28]. There, the traditional
CIA principles (i.e., confidentiality, integrity, availability) are
extended to include authorization and non-repudiation as key
concepts. While the definition of important security goals
may not be fruitful at this stage, it is crucial to ensure that
the business relevance of the system to be developed is well
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Fig. 1. Architecture of the ThreatFinderAI Approach

understood [29]. In the methodology, this step is fulfilled by
(i) the scoping of a specific architecture to the scope of a
business mission and defining a key security requirement and
asset. For example, users define a scenario such as “LLM-
based complaint pre-processing” with “data” as an asset and
“confidentiality” as a key property.

In the second step, the system must be closely analyzed
and understood from an architectural perspective. For this, the
context for the threat modeling process is essential – whether
for designing a completely new architecture or a threat model
is created for an existing system as part of a risk assessment.
The methodology behind ThreatFinderAI proposes to rely on
(ii) visual architectural modeling. Hence, verifying whether
there are existing system diagrams and models is crucial. Here,
it is essential to draw a holistic picture of the architecture, for
which the guiding model of the AI life cycle from [28] can be
helpful to elicit all activities and the systems involved. Thus,
to support the architecture modeling, ThreatFinderAI includes
a diagram editor and a procedure to ensure that all life stages
of the system are incorporated. For example, even when using
a pre-trained model, it is important to draw the data collection
procedure to capture the whole attack surface, even though a
service provider may perform it transparently. A meta-model
that abstracts over resources detailing AI attacks is proposed
to guide the diagram editor. The key concepts (i.e., concepts
including processes, environments, data, models) from [28]
are formalized for architectural modeling. Thus, each item in
the diagram is characterized by its category (e.g., data, model,
procedure, actor, infrastructure). A set of annotated stencils is
proposed to ensure that diagrams remain machine-processable,
each representing one entity in the meta-model.

In the third step, the architecture model serves as a means
to (iii) elicit assets. Conceptually, these are the functional
and data assets subject to the security goals. As already
mentioned, ThreatFinderAI takes a visual approach since it
is assumed to be well-established for the development of
software architectures. Thus, the asset elicitation step can be
automated and guided by retrieving the annotations from the
architectural diagram and querying them against the previously
described meta-model.

The set of assets can then be used as an input for (iv) threat
recognition, yielding related threat events. For example, the
presence of training data provided by an untrusted actor could
indicate the system’s vulnerability to a data poisoning attack.
ThreatFinderAI achieves threat identification through an attack
graph that queries several knowledge bases that are aligned
through a graph model. Here, ENISA [28], the OWASP AI
Exchange [30], and the MITRE ATLAS [23] catalogues are
transformed into a graph-based form. Then, they are related
through properties (e.g., related asset category, life cycle stage)
to the meta-model. Based on this, all knowledge bases can be
queried using the previously extracted assets.

Naturally, not all resulting threats are applicable or equally
relevant. Thus, the (v) threat analysis phase requires users to
navigate the suggestions and add them to a threat model. Here,
threats relating to the initially defined key asset or key objective
are highlighted. Following the previous example, the threats
indicate that a data inference attack can be applied directly to
the data or the model. Although users are instructed to review
the highlighted key threats (i.e., ones targeting the key asset)
first, the full list can be filtered based on life cycle, impact,
or asset. The next step involves (vi) identification of technical,
organizational, or strategic mitigation controls. To automate
the step, the knowledge bases can be queried. Here, the meta-
model enables control identification through the life cycle
stage of the threat. For example, monitoring a model’s usage
is a countermeasure associated with the production stage.

At this stage, a generic threat modeling procedure could be
concluded. For example, in a secure software design process,
formulating strategic risks may be out of scope, and the
key objective is to discover appropriate, practical control
mechanisms. However, in a risk assessment context, the output
of previous threat models can be reused to (vii) analyze
strategic risks, thereby generating value through collaboration.
In modern ERM, all risks should be quantified [27]. For this,
data is needed. Two data sources can be considered – historical
and expert-based. Cybersecurity is still an emerging risk [27],
and AI security is arguably highly novel within cybersecu-
rity [11]. Thus, ThreatFinderAI proposes to aid experts in
quantifying, visualizing, and communicating the uncertainty



Fig. 2. Front end of ThreatFinderAI: Architectural Modeling and Asset Annotation Using a Bespoke AI Asset Stencil Library

of AI threats. This is done by identifying business impacts
through a set of impact factors compiled from the literature
that are mapped to security properties. For example, the
previously mentioned data confidentiality breach could lead to
breach notification penalties or reputation loss. The following
steps in ThreatFinderAI facilitate AI threat quantification:

1) Build a risk scenario that assesses residual risk by identi-
fying related business impacts. ThreatFinderAI provides
a set of tangible and intangible business impacts related
to a threat’s security property.

2) For each impact, a distribution of financial impacts
can be developed by eliciting Imin and Imax, which
represent the worst- and best-case loss estimates. Fur-
thermore, the expert defines a confidence level Ic.

3) The estimated number of occurrences is elicited by
defining the best and worst-case number of occurrences
(i.e., omin, omax, and oc), including the confidence level.

Once these parameters are established, the risk scenarios
can be modeled and quantified. In ThreatFinderAI, this is
achieved by performing Monte Carlo simulations of the two
distributions that are built from the experts’ estimates. By
means of the Imin, Imax, and Ic, a log-normal distribution
of financial losses is built. This distribution is commonly used
to model operational losses in risk management [29], as it can
represent the potential “long-tail” across the distribution (i.e.,
more impacts to exceed Imax than to fall below Imin). Since
the occurrences of each risk scenario are expressed through
discrete values, their distribution is modeled through a Poisson
distribution using omin, omax, and oc. The exposure distribu-
tion is then built by performing the simulations (i.e., drawing n
values from both distributions). Then, ThreatFinderAI presents
several metrics and visualizations to assess the residual risk
exposure. First, the optimistic (p = 0.2), pessimistic (p = 0.8),
and expected loss (p = 0.5) values are displayed. Furthermore,
as shown in Fig. 3, the probability density function of the
losses and the loss exceedance curve can be visualized.

B. Prototype Implementation

To implement the components for the ThreatFinderAI threat
modeling approach, the components outlined in Fig. 1 were
implemented and integrated into a web-based solution. Starting
from the front end, the user interacts with a web-based graph-
ical user interface implemented as a Single-page Application
(SPA) using React.js [31]. First, the user creates a new project
description and defines the key asset and security goal.

By integrating and parametrizing the diagrams.net diagram
editor [32], the architecture can be modeled without any data
leaving the browser. To enable asset elicitation and threat iden-
tification, a bespoke stencil library was crafted to simplify and
guide the asset modeling stage. The stencil library provides
one stencil for each asset identified from the comprehensive
report provided by ENISA [26]. Adding to the generic threat
modeling stencils (e.g., data flow arrows, trust boundaries),
72 stencils are formalized into an XML file. This enables the
automated annotation of metadata to analyze the resulting di-
agram. Threats are identified by parsing the resulting diagram,
extracting assets, and querying any of the knowledge graphs.
Each knowledge graph is formatted as a JSON file and aligned
by relating threats through the asset-based meta-model that
leverages high-level steps and asset categories from [26]. A
hierarchical representation enables users to discover threats
and controls per asset, evaluate their relevance, and add them
to a threat model. Finally, residual risks can be quantified by
the user as previously described. This is the only time data
leaves the browser – Monte Carlo simulations are performed
using the popular Python-based numpy [33] and scipy [34]
libraries. After performing n = 100′000 simulations, the
exposure distribution is downsampled and sent back to the
front end, where it is visualized (cf. Fig. 3).

The ThreatFinderAI prototype only relies on a small num-
ber of open-source dependencies (i.e., diagrams.net, React,
FastAPI). Thus, the full source code is made publicly avail-
able [35], and a running instance is available online [36].



Fig. 3. ThreatFinderAI Indicating Residual Risk Exposure through Metrics and Visualization of Loss Distribution and Loss Exceedence

IV. EVALUATIONS

ThreatFinderAI’s goal is to support, guide, and automate
threat identification when modeling threats and risks surround-
ing AI-based systems. Assessing the effectiveness is challeng-
ing since there is a lack of “perfect” threat models against
which the tool can be tested. Furthermore, threat modeling
is still a highly human-centered activity [37]. Thus, evaluating
ThreatFinderAI focuses on whether users could sensibly apply
the approach in practical settings, yielding relevant threat
models and supporting meaningful risk discussions.

A. Scenario-driven Field Experiment

In the first evaluation, a scenario-driven field experiment
was conducted, which involves both controlled (i.e., a clear
and repeatable task for participants) and real-world elements
(i.e., a real AI system architecture and a baseline threat model).
First, a threat model is created by security and data science
experts collaboratively developing a secure architecture for
an AI system in healthcare. Although it cannot be proven
that the expertise of the experts leads to an exhaustive and
correct threat model, it provides a baseline to compare the
threat model created by participants using ThreatFinderAI.

The practical context of the model that was created in
both steps was the ongoing development of a platform to
collect, store, share, and train models from clinical data. The
healthcare platform is tailored for clinical data analysis by
engineers, clinicians, and researchers. It aims to provide a
robust data-gathering system with controlled data synthesis
to facilitate experimentation and modeling in the healthcare
domain. The platform prioritizes data privacy by incorporating
advanced anonymization techniques, attribute-based privacy
measures, and reliable tracking systems. The main functional-
ities of the platform are organized into three primary modules
(i.e., Model Training, Model Auditor, and Data Synthesizer),
seven supporting modules (i.e., Data Anonymization Toolkit,
Data Uploader, Cross-Border Database, Dataset Explorer,
Dataset Builder, Dataset Evaluator, and Federated Learning),
and three crosscutting modules (i.e., Security Control, User
Interface, and Orchestrator). Data confidentiality and privacy
are of utmost importance to business representatives. Not only
may data breaches lead to regulatory fines, but the overall trust
in the data-sharing platform is a crucial property to stimulate
successful data collection.

1) Execution: In the first stage, four experts collaborated
to create a threat model of the platform architecture: two
with conventional cybersecurity expertise, one with specific
AI security knowledge, and the fourth one with a data science
background. To do so, they leveraged diagrams.net [32] to
draw the system architecture, its trust boundaries, potential
threat actors, and relevant threats. In total, ten areas of concern
were identified and closely investigated. Here, it is important
to state that all four experts had to rely on external threat
information, which was manually surveyed and compiled us-
ing industry reports and academic literature. Potential system
threats were identified and linked to specific threat actors,
including malicious platform users, external actors, infrastruc-
ture administrators, and automated external entities (e.g., bots,
malware). These threats span a broad spectrum of security
concerns. The experts have pinpointed 44 threats throughout
the system. In contrast, ThreatFinderAI’s attack graph contains
96 threats – a superset of the threats identified by the experts.

In the second step, seven participants engaged in a threat
modeling workshop using ThreatFinderAI, receiving a video-
based tutorial on using the tool and information about the
previously described platform architecture. While the knowl-
edge transfer of the system architecture presents additional
complexity, it may not be unrealistic for a threat modeling
scenario (e.g., when onboarding a cybersecurity expert). Once
participants applied the tool to the scenario, the threat models
were collected, and the participants were guided through a
questionnaire to understand the perception of ThreatFinderAI.

First, the background and expertise of the participants were
elicited. As visible from TABLE II, participants from different
backgrounds were selected. None of the participants indicated
cybersecurity knowledge, and only two had a Computer Sci-
ence degree in Data Science. These participants were the only
ones who stated practical knowledge of working with AI.
The remaining participants considered themselves theoretically
knowledgeable. Next, it was investigated whether the assump-
tion that IT professionals are familiar with the diagrams.net
editor was justified. Based on statements shared on a Likert
scale, all technical participants expressed familiarity. None of
the participants expressed awareness of threat modeling tools.
Additional questions investigated the perceived ability to use
the tool. All participants felt successful in navigating the tool.
Participant Six (i.e., the pharmacist) faced challenges during



TABLE II
PARTICIPANTS BACKGROUND AND USABILITY RATING

# Educational Background AI Knowledge SUS Score

1 Master of Data Science Practical experience 55
2 Master of Data Science Practical experience 70
3 B.Sc. Software Systems Theoretical knowledge 85
4 B.Sc. Software Systems Theoretical knowledge 52.5
5 B.Sc. Information Systems Little to no understanding 52.5
6 M.Sc. Pharmacy Little to no understanding 75
7 Master of Law Little to no understanding 45

asset identification, acknowledging a limited understanding of
AI system architecture. When rating the clarity of the task
instructions, six out of seven considered them sufficiently
clear. All participants expressed confidence about their un-
derstanding of the architecture and scenario. Concluding the
questionnaire, the perceived usability was assessed using the
system usability scale (SUS), providing a simple, standardized
scoring using ten questions [38]. The resulting scores are
shown in TABLE II. Considering all participants, the average
score evaluates to acceptable usability. Out of the participants
with a computer science background, Participant One’s score
stands out negatively, while the individual responses conflict.
For example, the participant indicated that he/she might re-
quire assistance from a technical person while expressing
that the tool is easy to learn. Based on additional open
feedback collected, Participant One disliked the diagram editor
leveraged in ThreatFinderAI while positively acknowledging
the platform’s features.

2) Analysis: Since the threat modeling process is guided
and automated, artifacts, such as the annotated architecture
diagrams and the threat models, were recorded and analyzed
by the initial threat analysis experts. In the objective selection,
it was observed that the participants and the expert group
agreed on the security properties and assets. Based on the
expert assessment, Participants One, Two, Three, and Six
successfully identified all relevant threats, underscoring the
advantage of AI knowledge in threat modeling for AI-related
systems. While this does not come as a surprise, given that they
are the most relevant target group, it is surprising that even
a layperson achieved this. Therefore, the participants with a
data science background discovered all relevant threats (and
more granular variants) from the expert-based model. While
the application is effective in helping users discover relevant
threats, users are still required to discard less relevant threats.

In summary, participants effectively identified all potential
threats using the architectural model, addressing previously
identified gaps in the literature. However, efficiency could
be improved by further filtering threats, potentially through
subcategories of security objectives and requirements. The
experiment shows that practitioners with a technical back-
ground could use this tool as guidance for an initial threat
identification step. The resulting threat model would require
further analysis either by leveraging additional tools, involving
security experts, or conducting cybersecurity training.

B. Case Study: Risk Identification and Quantification

In the second experiment, ThreatFinderAI is applied in
a real-world context through a case study within a legal
advisory company. One of their services entails the analysis of
a case through a legal advisor, which frequently leads to the
creation of an objection letter. The creation of such letters is
highly repetitive: after manual inspection, the advisor tasks an
assistant to parameterize a template using customer and case
information. Since the company already stores its customer
data in a cloud-based Customer Relationship Management
system (CRM), it is intrigued whether integrating an LLM-
based architecture could automate this process. The following
questions were guiding the case study.
Q1) Which threats arise for such an integration?
Q2) Which countermeasures can be considered?
Q3) Does the integration pose a strategic risk?

1) Execution: First, a new scenario is created within the
platform. Then, together with the domain expert, confiden-
tiality is defined as a key goal, and customer data as a key
asset. Since the advisor would perform manual checks of
the generated letters, the integrity of the resulting letters is
not as critical. Furthermore, although the automation would
potentially improve efficiency, the system’s availability is not
critical since the letters can still be created manually.

Once these high-level requirements were established, a
potential integration architecture was developed. Instead of the
domain expert, a subject-matter expert on cloud-based systems
(hereinafter referred to as “architect”) developed an integration
architecture. Since no previous architecture diagram existed, a
new one was drawn. The architect leveraged the stencils pro-
vided by ThreatFinderAI. The resulting architecture involved
two cloud platforms (one hosting the existing CRM and the
other hosting a service-based LLM). In addition, a web API of
a third party provides access to case files. Due to data privacy
concerns, the company did not allow the publishing of the
architecture; however, the developed architecture represents a
more detailed variation of the one indicated in Fig. 2.

Once the architecture was drawn, the architect navigated to
the “analyze” page, where each asset was automatically ex-
tracted from the diagram. Although the architect is unfamiliar
with the OWASP AI Exchange knowledge base, it was selected
due to familiarity with other OWASP initiatives. ThreatFind-
erAI automatically identified ten assets. Then, due to the
initial objective definition (i.e., data confidentiality), only four
assets are displayed: customer information, case files, prompt
input and output. Since the case files are from a third-party
service, they are not directly critical to the company. Since
customer information is clearly the key asset to be protected,
it was further analyzed. ThreatFinderAI suggested six threats
that relate to the confidentiality of the data assets. To filter
the threats, development-time threats were excluded through
the life cycle filter (i.e., ignoring model development stages),
since the customer data is not used for model refinement or
training. Thus, the following three key threats remained from
the OWASP-based knowledge base.



T1 Leaking sensitive input data, through the prompt.
T2 Sensitive data in the output (e.g., copyrighted text or

customer information).
T3 Data exfiltration in the CRM where the data is stored.

Although all three are relevant and important to consider
to secure the architecture holistically, the third threat T3 is
already known since the customer data is already stored in
the cloud. Since the objective of the case study is to identify
the strategic risks of adopting the LLM, the first two threats are
prioritized. The control identification is carried out after adding
the two threats to the threat model. Here, the knowledge base
is queried using two properties: the life cycle stage (i.e., model
usage) and the asset type (i.e., data assets), yielding the control
measures highlighted in TABLE III.

Apparently, data minimization and anonymization tech-
niques, as well as verifying the output of the LLM, are critical
controls. Thus, the architecture should be revised to include
(i) automatic anonymization during prompt creation by an
automated middleware service, (ii) logging input and output,
and (iii) reviewing the output before using it as a letter.

Based on a discussion of insights from the company, all
control measures were considered feasible. Nevertheless, not
all controls would be perfectly effective (i.e., completely
mitigate the threats). Thus, two residual risks remain after
applying the impact analysis function of ThreatFinderAI. First,
an anonymization failure could lead to the leakage of personal
data, thus breaching customer trust and privacy regulations.
The platform proposed two business impacts: data protection
fines and potential customer losses. For the second risk, the
failure to recognize the presence of copyrighted material in
the resulting letter could lead to a legal dispute since the case
files are provided by a commercial service.

The impacts were then quantified using the risk simulator in
ThreatFinderAI. There, the tool gathered the estimated lower
and upper bound for each risk, including the probability of
occurrence, loss, and confidence level. Two aspects were con-
sidered: the applicability of Swiss privacy law with potential
fines and the adoption of an insurance product. Then, the losses
and occurrences displayed in TABLE IV are estimated. After
ThreatFinderAI performed 100’000 Monte Carlo simulations,
the annualized loss expectation was visualized, as summarized
in TABLE V. Based on the range of potential losses, there was
high uncertainty regarding the impacts. Furthermore, when
interpreting the overall risk exposure (i.e., aggregating all
scenarios), it appears that the introduction of the LLM-based

TABLE III
CONTROLS IDENTIFIED FOR THE TWO KEY THREATS

Threat Countermeasures

Data Minimization and Anonymization or Deidentification
T1 Control Access to Customer Info

Encrypting the Communication Channel

Detect and Filter Sensitive Fields
T2 Output Monitoring and Retention

Manual Review of Output

TABLE IV
IMPACT ESTIMATES OVER TEN YEARS

Scenario Occurrence Losses (CHF) Confidence

Data Protection Fine [0, 2] [1E4, 1E5] 0.9
Customer Losses [0, 5] [1E5, 5E5] 0.9
Legal Dispute [0, 1] [2E5, 3E5] 0.95
Occurrences Are Modeled Over a 10-Year Horizon, Losses are Per Event

architecture could pose a strategic risk if the company is
not willing to formulate a corresponding risk appetite. If the
system were adopted, ThreatFinderAI indicates the exposure
per threat. Hence, non-technical measures can be considered,
too. For example, the law firm could offer their customers a
transparent opt-in-based service, where they decide whether
to pay for a semi-automated or a pricier, fully expert-driven
service. This could reduce the impact of customer losses since
customers would be aware of the technology’s usage.

TABLE V
SIMULATED LOSSES (IN CHF) OVER TEN YEARS

Scenario Optimistic Expected Pessimistic

Data Protection Fine 69’162 139’647 233’629
Customer Losses 1’177’150 1’822’151 2’667’088
Legal Dispute 0 292’027 582’141

Based on exceedance scenarios with P = 0.2, P = 0.5, and P = 0.8

2) Findings: Based on the application of ThreatFinderAI,
the initial questions of the case study can be discussed.
Regarding Q1, the ThreatFinderAI approach successfully en-
abled the identification of relevant threats by modeling the
architecture of a system. Although the threats cannot be proven
to be complete, the approach was successfully applied to an
architectural design to stipulate threat identification. In the case
study, an LLM-based architecture was analyzed. Although the
methodology was developed for generic AI architectures (i.e.,
not specifically for LLMs), the proposed meta-model unifying
the different knowledge bases is generic enough to support
this architecture. Although domain experts have to apply their
expertise to build a threat model using the suggested threats,
ThreatFinderAI automatically suggested several relevant coun-
termeasures, effectively answering Q2. For example, as shown
in TABLE III, data minimization arises as a constructive
control to be implemented. Finally, ThreatFinderAI was used
to elicit potential business impacts. These impacts were then
quantified in an expert-based simulation. Due to the lack of
data on AI risks, it is impossible to prove the estimations’
correctness. However, it can be argued that ThreatFinderAI
supports formulating strategic risks. For example, the pre-
viously discussed exposures could facilitate the discussion
that customer losses pose a strategic risk for the company.
Moreover, experts can use the visualizations to express their
degree of uncertainty by defining the confidence level and the
distance between optimistic and pessimistic losses. Thus, the
proposed business impact analysis and quantification present
successful answers for Q3.



V. SUMMARY AND FUTURE WORK

Due to the necessity of considering AI-based system ar-
chitectures and their security concerns, this paper proposes
ThreatFinderAI. The approach aligns AI security with threat
modeling through a guiding approach and prototype. The
prototype includes a front end to define security objectives
and enables architectural diagramming with a bespoke stencil
library of AI assets. The diagrams are automatically analyzed
against an aggregated knowledge graph spanning industry
reports. In addition, ThreatFinderAI enables control identifica-
tion, business impact analysis with a set of compiled impacts,
and the ability to perform and visualize risk quantification.

To understand the prototype’s practicability, effectiveness,
and usability, a small-scale user experiment confronted users
with a real-world AI system architecture. The results show
the feasibility of the AI threat modeling approach, as well as
the effectiveness when non-security experts identify threats.
Furthermore, the case study of an LLM-based system demon-
strates that the approach can be deployed in a real-world
scenario. Here, ThreatFinderAI automatically identified key
threats and countermeasures and helped communicate the
residual risk exposure. Hence, based on these results, it is con-
cluded that ThreatFinderAI presents a valuable contribution to
the security management of AI-based systems, especially when
integrating it directly into the design phase of a system. Here,
it could serve as a tool to help security engineers automate
the threat modeling stage or help non-security experts adopt
threat modeling when building AI systems. In the future, the
usability and effectiveness will be further tested with a broader
set of participants and scenarios. Moreover, the approach will
be tailored to specific AI trends, such as Federated Learning.
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